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Abstract
We define a q-deformation of the Dirac operator, inspired by the one-
dimensional q-derivative. This implies a q-deformation of the partial
derivatives. By taking the square of this Dirac operator we find a q-deformation
of the Laplace operator. This allows us to construct q-deformed Schrödinger
equations in higher dimensions. The equivalence of these Schrödinger
equations with those defined on q-Euclidean space in quantum variables is
shown. We also define the m-dimensional q-Clifford–Hermite polynomials and
show their connection with the q-Laguerre polynomials. These polynomials
are orthogonal with respect to an m-dimensional q-integration, which is related
to integration on q-Euclidean space. The q-Laguerre polynomials are the
eigenvectors of an suq(1|1)-representation.

PACS numbers: 02.30.Gp, 02.20.Uw, 02.30.Px, 02.30.Fn
Mathematics Subject Classification: 15A66, 33D50, 17B37, 33D45

1. Introduction

Quantum algebras are q-deformed versions of universal enveloping algebras of Lie algebras;
the latter are recovered as the deformation parameter q goes to unity. The study of quantum
algebras leads to the use of mathematical tools of q-analysis, see [1, 2]. In [3] Jackson originally
introduced the q-analogues of differentiation, integration and special functions in the context
of q-hypergeometric series (also known as basic hypergeometric series). In particular, there
are connections between representations of quantum algebras and q-special functions [4] and
q-calculus [5]. Also in the framework of q-harmonic analysis in this paper, we will obtain an
suq(1|1)-representation for which the q-Laguerre polynomials (see [1]) are the eigenvectors.
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In [6] q-analysis is used to solve the SOq(m)-invariant Schrödinger equation in quantum
Euclidean space, see [7]. The results in [8] about q-difference equations can be used to solve
more general SOq(m)-invariant Schrödinger equations in quantum Euclidean space. Also the
objects of q-harmonic analysis developed in this paper can be used to study quantum Euclidean
space.

The interest for quantum algebras in physics was partly triggered by the introduction
of the q-deformed harmonic oscillator (see [9] for an overview). The first approaches,
however, lacked any dynamical content behind the Hamiltonian. In [5] an overview of
different realizations of the q-Heisenberg algebra is given, using the q-derivative, leading to
the q-harmonic oscillator. In [10] a procedure for general q-deformed quantum mechanics was
constructed using the q-derivative. Until now the higher dimensional q-deformed isotropic
oscillator is only defined in quantum Euclidean space or in undeformed space by an unnatural
separation of the radial part.

The q-harmonic oscillators lead to the q-Hermite polynomials, see e.g. [11]. In [1, 12]
it was shown that the q-Hermite polynomials are orthogonal with respect to q-integration and
have annihilation and creation operators using the q-derivative. Because all the different types
of the q-Hermite polynomials satisfy many properties that are analogues of the properties
of the Hermite polynomials, see e.g. [11–13], they are themselves the interesting objects of
study.

In this study we define a theory of q-deformed derivatives in higher dimensions and a
q-deformed Laplace operator acting on functions with commuting variables. Since we use
Clifford analysis [14, 15] for this, we define a q-deformed Dirac operator with its square a
q-Laplace operator. As the undeformed SO(m)-invariant harmonic operators generate the Lie
algebra sl2(R) we now find a q-deformation of this algebra. This leads to a Howe dual pair
[16] with a quantum algebra, (SO(m), sl2(R)q).

Because the q-Laplace operator is scalar, it can be expressed without Clifford algebras.
However, the Clifford approach to this q-Laplace operator is more natural. The resulting
q-Laplace operator can be used to put an existing q-deformation of the isotropic Schrödinger
equation in undeformed space [8, 17, 18] in a complete setting. This equation has its origin in
quantum Euclidean space, see [6, 7, 19]. Using the q-Laplace operator, the angular and radial
part are reunited in a complete Schrödinger equation in undeformed space. This quantum
system has the same energy spectrum as the Schrödinger equation in quantum Euclidean
space.

Using the q-deformed Dirac operator we can define a q-deformation of the Clifford–
Hermite polynomials. These are higher dimensional generalizations of the one-dimensional
Hermite polynomials, see [20]. Similar to the undeformed case there is a connection between
the q-Clifford–Hermite polynomials and the one-dimensional q-Laguerre polynomials which
were introduced in [21, 22]. Once again, this justifies the choice of our q-Dirac operator. Using
this construction we obtain realizations of su(1|1)q acting on R[t] for which the q-Laguerre
polynomials are the eigenvectors. This is a concrete generalization of the occurrence of the
Laguerre polynomials as formal eigenvectors in the l2(Z+) representation space for su(1|1),
see e.g. [23].

The paper is organized as follows. First we repeat some facts about quantum
numbers and derivatives and give a short introduction to Clifford analysis. From a list
of axioms we derive a unique q-Dirac operator, which leads to a q-Laplace operator.
We show an important connection with the SO(m)q-invariant Laplace operator in q-
Euclidean space. Then we construct an integration which leads to q-Cauchy formulae.
Finally we define the q-Clifford–Hermite polynomials and prove their most important
properties.
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2. Preliminaries

We give a short introduction to quantum numbers (q-numbers), q-derivatives and q-integration,
see [1–3, 9]. For u a number or operator, and q the deformation parameter, we define (where
it exists) the q-deformation of u by

[u]q = qu − 1

q − 1
.

It is clear that limq→1[u]q = u. In this paper we assume q ∈ R
+. The q-derivative of a

function f (t) is defined by

∂
q
t (f (t)) = f (qt) − f (t)

(q − 1)t
. (1)

For this to exist, the function has to be defined in t and qt and has to be differentiable in
the origin. From the definition we find

∂
q
t (tk) = qk − 1

q − 1
t k−1 = [k]q t

k−1

and the Leibniz rule

∂
q
t t = qt∂

q
t + 1. (2)

This is a special case of the following two Leibniz rules:

∂
q
t (f1(t)f2(t)) = ∂

q
t (f1(t))f2(t) + f1(qt)∂

q
t (f2(t)) (3)

= ∂
q
t (f1(t))f2(qt) + f1(t)∂

q
t (f2(t)). (4)

For q < 1, the q-integration on an interval [0, a] with a ∈ R is given by∫ a

0
f (t) dq t = (1 − q)a

∞∑
k=0

f (aqk)qk. (5)

More general intervals are defined by
∫ b

a
= ∫ b

0 − ∫ a

0 and satisfy the important property∫ b

a

(
∂

q
t f

)
(t) dq t = f (b) − f (a). (6)

The q-factorial of an integer k is given by [k]q! = [k]q[k − 1]q · · · [1]q . This leads to the
introduction of the q-exponential

Eq(t) =
∞∑

j=0

t j

[j ]q!
. (7)

In order to find its inverse we define a second q-exponential by

eq(t) = Eq−1(t) =
∞∑

j=0

q
1
2 j (j−1) t j

[j ]q!
. (8)

Now Eq(t)eq(−t) = 1, see [2, 4, 9]. It is easily calculated that

∂
q
t Eq(t) = Eq(t), ∂

q
t eq(t) = eq(qt). (9)

The series Eq(t) converges absolutely and uniformly everywhere if q > 1 and for |t | < 1
1−q

if q < 1, see [1]. The q-binomial coefficients are defined by(
n

k

)
q

= [n]q!

[n − k]q![k]q!
.
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We can also define the q-Gamma function for q < 1:

�q(t) =
∏∞

k=1(1 − qk)∏∞
k=0(1 − qt+k)

(1 − q)1−t ,

with the property that �q(t + 1) = [t]q�q(t), see [2]. The function �q admits the following
integral representation:

�q(z) =
∫ 1

1−q

0
dq t t

z−1eq(−qt), (10)

see [1, 4]. Sometimes we will encounter expressions which we will write as q2-deformations,
for example [2u]q = (q + 1)[u]q2 ; therefore, we fix the notation Q = q2.

Now we briefly recall the basic notions of Clifford analysis. For more details we refer
the reader to [14, 15]. Denote by R0,m the Clifford algebra generated by an orthonormal basis
(e1, . . . , em) for R

m with multiplication rules

eiej + ej ei = −2δij (11)

for 1 � i, j � m. The algebra generated by these Clifford numbers and the m commuting
variables xj, which commute with ei, 1 � i � m, is the algebra of Clifford-valued polynomials
P = R[x1, . . . , xm] ⊗ R0,m. The vector variable is identified with the first-order Clifford
polynomial of the form x = ∑m

j=1 ejxj . Using (11) we find that the square of this vector
variable is scalar valued, x2 = −∑m

j=1 x2
j = −r2. The corresponding vector derivative in the

vector variable x is the Dirac operator:

∂x = −
m∑

j=1

ej ∂xj
.

The square of the Dirac operator is again scalar, ∂2
x = −�, with � the Laplace operator.

Using the Clifford multiplication rules (11) we can calculate

{x, ∂x} = ∂xx + x∂x = 2E + m, (12)

with E = ∑m
j=1 xj∂xj

the Euler operator. In particular we find ∂x(x) = m and

∂xx
2 = x2∂x + 2x. (13)

We will use the notation f (x) = f (x1, . . . , xm). Clifford analysis deals with the function
theory of solutions of ∂xf (x) = 0, called monogenic functions, in particular monogenic
polynomials of degree k.

Definition 1. An element F ∈ P is a spherical monogenic of degree k if it satisfies

∂xF = 0 and EF = kF.

The space of all spherical monogenics of degree k is denoted by Mk .

In the same way we can define the space of spherical harmonics of degree k, Hk , as the
null solutions of the Laplace operator, clearly Mk ⊂ Hk . We have the following well-known
decomposition of the space of polynomials.

Lemma 1 (Fischer decomposition I). The vector space Pk decomposes as

Pk =
�k/2�⊕
i=0

x2iHk−2i .

4
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This decomposition is unique; hence,
∑

i x
2iHk−2i = 0, with (Hj ∈ Hj ), implies Hk−2i = 0

for every i.

Since � is scalar, we can replace P with R[x1, . . . , xm] in the previous lemma. The
decomposition can be refined to

Lemma 2 (Fischer decomposition II). The vector space Pk decomposes as

Pk =
k⊕

i=0

xiMk−i .

This decomposition is unique; hence,
∑

j xk−jMj = 0 (with Mj ∈ Mj ) implies Mj = 0 for
every j .

Commutation rules (12) and (13) yield

∂xx
2lMk = 2lx2l−1Mk (14)

∂xx
2l+1Mk = (2l + 2k + m)x2lMk. (15)

These equations together with lemma 2 imply that every (scalar) Hk can be decomposed
as

Hk = Mk + xMk−1. (16)

The operators ∂x and x generate a finite-dimensional Lie super-algebra isomorphic to
osp(1|2). The even subalgebra is generated by ∂2

x , x2 and E + m/2 and is isomorphic to the
Lie algebra sl2(R), see [16, 24]. The commutation relations of the Lie super-algebra are given
by [

∂2
x

/
2, x2/2

] = E + m/2 {x, x} = 2x2[
∂2
x

/
2, E + m/2

] = 2∂2
x

/
2 {∂x, ∂x} = 2∂2

x[
x2/2, E + m/2

] = −2x2/2 {∂x, x} = 2E + m

and
[x, x2] = 0 [∂x, x

2] = 2x[
x, ∂2

x

] = −2∂x

[
∂x, ∂

2
x

] = 0
[x, E + m/2] = −x [∂x, E + m/2] = ∂x.

An important feature in harmonic and Clifford analysis is the occurrence of Howe dual pairs,
see [16]. The generators of the Lie algebra sl2(R) are SO(m)-invariant. These operators
acting on the module ⊕j r

2jHk give an infinite-dimensional irreducible representation of
sl2(R). The blocks r2jH′

k , with H′
k the scalar spherical harmonics, are the irreducible pieces

of R[x1, . . . , xm] under the action of SO(m). This can be refined to the Howe dual pair
(Spin(m), osp(1|2)) (see [14, 15]), with Spin(m) the universal cover of SO(m).

These Howe dual pairs return in different generalizations of harmonic and Clifford
analysis. In Dunkl harmonic analysis (see [25]) we have the pair (G, sl2(R)) with G
a Coxeter group. In super-harmonic analysis (see [24]) we find the Howe dual pair
(SO(m) × Sp(2n), sl2(R)). The Howe dual pair for Hermitian Clifford analysis can be
found in [26]. By defining q-deformed Clifford analysis we will obtain Howe dual pairs with
the quantum algebras sl(R)q and osp(1|2)q .

The Euler operator E = r∂r represents the radial part in x∂x ; the angular part is given by
the Gamma operator �:

x∂x = E + �. (17)

5
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By using x = rξ with ξ 2 = −1, this equation can also be written as ∂x = −ξ
(
∂r + 1

r
�

)
.

While the Euler operator is scalar, the Gamma operator is a bivectorial operator, � =
−∑

i<j eiej

(
xi∂xj

− xj∂xi

)
. Using Ex = xE + x and (12) we obtain the commutation

relations for the Gamma operator:

�x = x(m − 1 − �) (18)

�x2 = x2�. (19)

We will also need the main anti-involution on the Clifford algebra R0,m, defined by

ei = −ei ab = ba, for all a, b ∈ R0,m.

For Clifford-valued functions on the unit sphere there is an inner product

〈f |g〉 =
∫

S
m−1

dξ [f g]0,

with · the main anti-involution and [·]0 : R0,m → R the projection onto the scalar part. For
two spherical harmonics of degree k = l,∫

S
m−1

dξHkHl = 0 (20)

holds. In particular, we will consider a fixed orthonormal basis of spherical monogenics M
(p)

k :∫
S

m−1
dξ

[
M

(p)

k M
(r)
l

]
0 = δklδpr . (21)

3. Definition of the operators

3.1. The q-Dirac operator

Our aim is to obtain a q-deformed version of the vector derivative, or the Dirac operator ∂x

which we will denote by ∂
q
x . First we derive four axioms such an operator should satisfy.

Inspired by ∂
q
t (t) = 1 = [1]q and formula (12) we impose ∂

q
x (x) = [m]q . We also need a

good q-deformed Leibniz rule based on (2). We deform commutation relation (13) instead of
(12) because x2 is scalar. Therefore, we can elegantly extend ∂

q
t t2 = q2t2∂

q
t + (q + 1)t to

∂q
x x2 = q2x2∂q

x + (q + 1)x.

To obtain a q-deformation of the Laplace operator,
(
∂

q
x

)2
has to be a scalar operator.

For the last axiom we use the Fischer decomposition in lemma 2 to find that a basis for the
polynomials of degree 1 is given by

x, x1e2 + x2e1, . . . , x1em + xme1.

It can be shown that all monogenic functions are Taylor series in xj e1 + x1ej , j = 1 (see
[14, 15]). This is a generalization of the fact that holomorphic functions (null solutions of
the Cauchy–Riemann operator ∂z) are Taylor series in z and not in z. Because ∂

q
x should

be a q-deformation of the derivative with respect to x we do not want it to mix up with the
derivation with respect to x1e2 + x2e1. This means ∂

q
x should satisfy

∂q
x f = 0

6
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when ∂xf = 0. Summarizing, ∂
q
x should satisfy the following four axioms:

(A1) ∂q
x (x) = [m]q

(A2) ∂q
x x2 = q2x2∂q

x + (q + 1)x

(A3)
(
∂q
x

)2
is scalar

(A4) ∂q
x Mk = 0.

We will show that these axioms uniquely define the q-Dirac operator on P .

Lemma 3. A linear operator on P satisfying (A2) and (A3) also satisfies the property that

∂q
x x + q2x∂q

x

is a scalar operator.

Proof. We calculate
(
∂

q
x

)2
x2 using (A2):(

∂q
x

)2
x2 = q2∂q

x x2∂q
x + (q + 1)∂q

x x

= q4x2
(
∂q
x

)2
+ q2(q + 1)x∂q

x + (q + 1)∂q
x x.

Rearranging the terms yields(
∂q
x

)2
x2 − q4x2

(
∂q
x

)2 = (q + 1)
(
∂q
x x + q2x∂q

x

)
. (22)

Because x2 and
(
∂

q
x

)2
are scalar, we obtain the lemma. �

Lemma 4. For a linear operator on P satisfying (A1)–(A4), the following relation holds:

∂q
x xMk = [m + 2k]qMk.

Proof. We know from (A1) that this holds for k = 0. Now we assume that
∂

q
x xMk = [m + 2k]qMk holds and prove that it also holds for k + 1. Using (A4) yields

∂q
x xMk+1 = (

∂q
x x + q2x∂q

x

)
Mk+1. (23)

We use (A2), (A4) and the induction step to calculate(
∂q
x x + q2x∂q

x

)
xMk = (q + 1 + q2[m + 2k]q)xMk

= [m + 2k + 2]qxMk.

Let Hk+1 be an arbitrary scalar spherical harmonic of degree k + 1, which means
x∂xHk+1 ∈ xMk , and we can substitute x∂xHk+1 for xMk in the above equation.
Equation (17) implies

x∂xHk+1 = (k + 1)Hk+1 + �Hk+1,

so the scalar part of x∂xHk+1 is proportional to Hk+1. Since
(
∂

q
x x + q2x∂

q
x

)
is a scalar operator

(lemma 3) the above equation holds separately for both Hk+1 and �Hk+1. So for every
scalar Hk+1 (

∂q
x x + q2x∂q

x

)
Hk+1 = [m + 2k + 2]qHk+1.

This equation can be multiplied with elements of the Clifford algebra on the right-hand
side, so it also holds for Mk+1. Combining this with equation (23) yields

∂q
x xMk+1 = [m + 2k + 2]qMk+1,

so the lemma is proved by induction. �

7
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Theorem 1. There is at most one linear operator on P satisfying (A1)–(A4). The action on
the Fischer decomposition (lemma 2) is given by

∂q
x x2lMk = [2l]qx

2l−1Mk

∂q
x x2l+1Mk = [2l + 2k + m]qx

2lMk.

Proof. Iterating (A2) yields

∂q
x x2l = [2l]qx

2l−1 + q2lx2l∂q
x .

Together with lemma 4, this proves the theorem. �

We introduce a closed expression for the operator which acts on P as in theorem 1. This
allows it to be defined on a function space larger than the polynomials.

Definition 2. The q-deformed Dirac operator is formally given by

∂q
x = 1

x
[x∂x]q

= 1

x
[E + �]q = x

x2
([E]q + qE[�]q)

= −ξ

(
∂q
r +

1

r
qr∂r [�]q

)
.

Remark 1. It is important to note that E and � commute, so qE+� = qEq� . This operator is
clearly defined everywhere on functions in the space P ⊗ J with J functions of r on R

+. This
corresponds to the spaces mostly used in quantum Euclidean space (see e.g. [6, 7]).

The operator qE can always be defined on f (x) if qx is in the domain of f . It is harder
to define q� . It can be defined locally on analytical functions. The Cauchy–Kowalewskaya
theorem on the system

∂ug(x, u) = �xg(x, u) g(x, 0) = f (x)

states that g(x, u) is analytical when f (x) is. Because g is analytical,

q�f (x) =
∞∑

j=0

(ln q)j

j !
�j

xg(x, 0)

=
∞∑

j=0

(ln q)j

j !

(
∂j
ug

)
(x, 0)

= g(x, ln q).

Remark 2. We could also consider functions which are only defined on ∂B
m(Ri) for some

Ri ∈ R
+ and are analytical on these (m − 1)-dimensional manifolds. The operator �x is

elliptic on these manifolds.

All the functions we will encounter in this paper are polynomials times radial functions
which pose no problem. When we take the case m = 1 we find that

∂q
x = 1

e1x1
[e1x1(−e1∂x1)]q

= − e1

x1
[x1∂x1 ]q

= −e1∂
q
x1

,

so the one-dimensional case is a special case of this theory.

8
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Theorem 2. The operator ∂
q
x in definition 2 is the unique linear operator on P satisfying

axioms (A1)–(A4).

Proof. Definition 2 and equations (14) and (15) imply that ∂
q
x satisfies the properties in

theorem 1, so it is unique. We only need to show that ∂
q
x satisfies the axioms (A1)–(A4) to

prove the existence. Axiom (A1) is trivial, axiom (A2) follows from formula (19):

∂q
x x2 = 1

x
[E + �]qx

2

= x2 1

x
[E + 2 + �]q

= x2 1

x
(q + 1 + q2[E + �]q)

= q2x2∂q
x + (q + 1)x.

To prove axiom (A3) we calculate(
∂q
x

)2
x2lMk = [2l − 2 + 2k + m]q[2l]qx

2l−2Mk(
∂q
x

)2
x2l+1Mk−1 = [2l]q[2l + 2k − 2 + m]qx

2l−1Mk−1.

Since every scalar spherical harmonic can be decomposed as Hk = Mk + xMk−1, we find
that (

∂q
x

)2
x2lHk = [2l]q[2l − 2 + 2k + m]qx

2l−2Hk. (24)

Since the set {x2lHk} spans all scalar polynomials (lemma 1),
(
∂

q
x

)2
acting on every scalar

polynomial is scalar. Axiom (A4) follows immediately from the definition.
�

The operator in definition 2 is of the form

∂q
x = −ei

m∑
i=1

Di (25)

where Di are scalar operators. In order to prove this, lemma 1 implies that it suffices to
calculate the action on scalar polynomials x2lHk , with decomposition Hk = Mk + xMk−1:

∂q
x x2lHk = [2l]qx

2l−1Hk + q2lx2l[m + 2k − 2]qMk−1

= [2l]qx
2l−1Hk + q2lx2l [m + 2k − 2]q

m + 2k − 2
∂xHk,

which clearly is a vector. Since, by axiom (A3), the square of ∂
q
x is a scalar operator,

(
∂q
x

)2 =
m∑

i,j=1

eiejDiDj

= −
m∑

i=1

D2
i +

∑
i<j

eiej (DiDj − DjDi)

is scalar. Since the set {eiej , i < j} is linearly independent, the operators Di must all commute.
We will call them the q-partial derivatives. The Dirac operator ∂x is invariant under the action
of Spin(m), the universal cover of SO(m). How the spin group can be realized in Clifford
analysis can be found in [14] and [15]. Because multiplication with x is also Spin(m)-invariant,
we find that ∂

q
x , as defined by definition 2, is also Spin(m)-invariant.

9
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Lemma 5. The q-Dirac operator in definition 2 satisfies

∂q
x x = [E − � + m]q .

Proof. We use commutation rule (18) to calculate

∂q
x x = 1

x
[E + �]qx = [E + 1 + m − 1 − �]q .

�

Lemma 6. For f a scalar function of r, we have the following Leibniz rule:

∂q
x f (r) = ∂q

x (f (r)) + f (qr)∂q
x = f (qr) − f (r)

(q − 1)x
+ f (qr)∂q

x .

Proof. Because � commutes with r we find

∂q
x f (r) = 1

x
([E]qf (r) + qEf (r)[�]q)

= 1

x
([E]qf (r) − f (qr)[E]q) +

1

x
f (qr)[E]q +

1

x
f (qr)qE[�]q

= 1

x

1

q − 1
(f (qr)qE − f (r) − f (qr)qE + f (qr)) + f (qr)∂q

x

= f (qr) − f (r)

(q − 1)x
+ f (qr)∂q

x .
�

3.2. The q-Laplace operator

As in the undeformed case we define the q-Laplace operator as minus the square of the q-Dirac
operator.

Definition 3. The q-deformed Laplace operator on analytical functions is given by

�q = −(
∂q
x

)2
.

Because ∂
q
x ∂

q
x (Mk + xMk−1) = 0 we find that the spherical harmonics are the polynomial

null solutions of the q-Laplace operator. The undeformed Laplace operator can be decomposed
into its radial and angular parts:

r2� = E(m − 2 + E) + �(m − 2 − �).

The angular part is the Laplace–Beltrami operator

�LB = �(m − 2 − �), (26)

which is clearly scalar although it is defined here using the Clifford-valued Gamma operator.
We will also derive such a decomposition for the q-Laplace operator. It turns out that the
angular part of the q-Laplace operator will be given by

Definition 4. The q-Laplace–Beltrami operator on analytical functions is defined as

�
q

LB = [�]q[m − 2 − �]q .

This operator is scalar, which is not obvious at first sight. This is a consequence of the
decomposition of the q-Laplace operator in theorem 3. Property (19) of the Gamma operator
implies that the q-Laplace Beltrami operator commutes with radial functions.

10
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Theorem 3. The q-Laplace operator can be decomposed as

�q = qm−1
(
∂q
r

)2
+ [m − 1]q

1

r
∂q
r +

1

r2
qE�

q

LB,

r2�q = [E]q[m − 2 + E]q + qE[�]q[m − 2 − �]q .

Proof. We calculate using definition 2, lemma 5 and formula (18)

r2�q = x[E + �]q[E − � + m]q
1

x

= [E + m − 2 − �]q[E + �]q
= ([E + m − 2]q + qE+m−2[−�]q)([E]q + qE[�]q)

= [E + m − 2]q[E]q + qE([�]q[E + m − 2 − �]q + qm−2[−�]q[E]q)

= [E + m − 2]q[E]q + qE[�]q

(
[E + m − 2 − �]q + qm−2 q−�(1 − q�)

q� − 1
[E]q

)
= [E + m − 2]q[E]q + qE[�]q[m − 2 − �]q .

This leads to the second expression; the first one can be found from

1

r2
[E]q[m − 2 + E]q = 1

r
∂q
r

(
[m − 2]q + qm−2r∂q

r

)
= [m − 2]q

1

r
∂q
r + qm−2 1

r
∂q
r + qm−1

(
∂q
r

)2
.

�

Remark 3. In [27] a theory of Clifford analysis in superspace was developed by constructing
a Dirac operator which satisfies ∂2

x = � with � the well-known orthosymplectic super
Laplace operator. Using definition 2 we can also construct a theory of q-deformed Clifford
and harmonic analysis in superspace.

The decomposition of the q-Laplace operator in theorem 3 can be used to calculate the
action on the product of a radial function and a spherical harmonic.

Lemma 7. For f a function of r and Hk a spherical harmonic of degree k, the following
holds:

�qf (r)Hk = Hk

[
qm−1+2k

(
∂q
r

)2
+ [m − 1 + 2k]q

1

r
∂q
r

]
f (r).

Proof. Since �qHk = 0, theorem 3 yields

qE�LBHk = −[k]q[m − 2 + k]qHk.

We use this to calculate

�qf (r)Hk = Hk

[
1

r2
[E + k]q[m − 2 + E + k]q − 1

r2
qE[k]q[m − 2 + k]q

]
f (r)

= Hk

1

r2
[[E]q[m − 2 + E + k]q + qE[k]q[m − 2 + E + k]q

− qE[k]q[m − 2 + k]q]f (r)

= Hk

1

r2

[
[E]q[m − 2 + E + k]q + qE[k]qq

m−2+k[E]q
]
f (r)

= Hk

1

r2
[E]q[m − 2 + E + 2k]qf (r).

11
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This is the usual action of �q on f (r), with substitution m → m + 2k. �

It is inelegant that scalar operators like the q-deformation of the Laplace and Laplace–
Beltrami operators are defined only using Clifford algebras. Therefore, we derive purely scalar
expressions for �

q

LB and �q .

Lemma 8. The q-Laplace–Beltrami on analytical functions is given by

�
q

LB =
[

m

2
− 1 −

√(m

2
− 1

)2
− �LB

]
q

[
m

2
− 1 +

√(m

2
− 1

)2
− �LB

]
q

.

Proof. It is not a priori clear that the right-hand side is well defined. In the case q = 1 we
find (m

2
− 1

)2
−

((m

2
− 1

)2
− �LB

)
,

so there does not really appear a square root of the Laplace–Beltrami operator, which would
be ill-defined. The same thing happens in the q-deformed case. The right-hand side is defined
by a series expansion, so it is equal to the series expansion of

qm−2 − q
m
2 −12 cosh

(
ln q

√(
m
2 − 1

)2 − �LB
)

+ 1

(q − 1)2
.

Using equation (26), we calculate

cosh

(
ln q

√(m

2
− 1

)2
− �LB

)
=

∞∑
l=0

(
ln q

√(
� − m

2 + 1
)2)2l

(2l)!

=
∞∑
l=0

(
ln q

(
� − m

2 + 1
))2l

(2l)!

= cosh
(

ln q
(
� − m

2
+ 1

))
.

This means that the expression on the right-hand side is equal to

qm−2 − q
m
2 −1

(
q�− m

2 +1 + q
m
2 −1−�

)
+ 1

(q − 1)2
= qm−2 − q� − qm−2−� + 1

(q − 1)2
,

which is the q-Laplace–Beltrami operator in definition 4. �

Similarly we can prove the following scalar expressions for the q-Laplace operator.

Theorem 4. The q-Laplace operator on analytical functions is given by

�q = 1

r2

[
E +

m

2
− 1 +

√(
E +

m

2
− 1

)2
− r2�

]
q

[
E +

m

2
− 1 −

√(
E +

m

2
− 1

)2
− r2�

]
q

= 1

r2

[
E +

m

2
− 1 +

√(m

2
− 1

)2
− �LB

]
q

[
E +

m

2
− 1 −

√(m

2
− 1

)2
− �LB

]
q

.

As we will see, the q-Laplace operator is related to a fundamental object in quantum
Euclidean space, without any connection to Clifford analysis. It is remarkable that it is
defined more elegantly using Clifford algebras (which disappear in the resulting operator), in
theorem 3, than without Clifford algebras, in theorem 4.

12
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3.3. A q-deformed version of sl2(R) and osp(1|2)

In classical harmonic analysis the SO(m)-invariant operators r2/2, �/2 and E + m
2 generate

the Lie algebra sl2(R), see [16]. These operators also generate as an associative algebra the
universal enveloping algebra of sl2(R). By q-deforming this to Uq(sl2(R)) we take one of the
two dually related ways to q-deform a Lie-algebra. We define

E = q + 1

4

(
∂q
x x + q2x∂q

x

) = q + 1

4
([E + m − �]q + q2[E + �]q). (27)

This operator is scalar, see lemma 3. We will use the notations {A,B}c = AB + cBA and
[A,B]c = AB − cBA. Rewriting equation (22) and a straightforward calculation lead to

[�q/2, r2/2]q4 = E

[�q/2, E]q2 = [4]q[2]q
4

�q/2

[E, r2/2]q2 = [4]q[2]q
4

r2/2.

So r2/2, �q/2 and E form a q-deformed version of sl2(R). This corresponds to the
su(1|1)q quantum algebra in [28], which is defined by the operators L1, L−1 and L0, satisfying

q−2L1L−1 − q2L1−1L1 = q
[4]q
[2]q

L0

q−1L1L0 − qL0L1 = L1

q−1L0L−1 − qL−1L0 = L−1.

This algebra is obtained from the identification L1 = q�q

[2]q
, L−1 = qr2

[2]q
and L0 = 4q

[4]q [2]q
E.

Now we prove that these generators of sl2(R)q are still SO(m)-invariant. Therefore, a
deformation of the Howe dual pair (SO(m), sl2(R)) to (SO(m), sl2(R)q) is obtained.

Lemma 9. The operators r2, �q and E are SO(m)-invariant.

Proof. Since the undeformed operators are SO(m)-invariant, we find that r2 is SO(m)-
invariant and using theorem 4 that �q is SO(m)-invariant. Because E can be written as the
q4-commutator of r2 and �q it is also invariant. �

The module ⊕j r
2jHk forms a lowest weight module for the representation of sl2(R)

given by the action of �, r2 and E + m/2. The lowest weight vector is Hk with lowest weight
m/2 + k. The action of �q, r

2 and E has the same structure but with q-deformed coefficients,
so we also obtain a lowest weight module for sl2(R)q .

We can consider a larger algebra than sl2, generated by ∂x and x. Then we find the
Lie super-algebra osp(1|2). Here we give the q-deformed commutation rules of the algebra
generated by ∂

q
x and x:

{x, x} = −2r2 {∂q
x , x}q2 = q + 1

2
E

{
∂q
x , ∂q

x

} = −2�q

and

[x, r2] = 0
[
∂

q
x , r2

]
q2 = −(q + 1)x

[�q, x]q2 = −(q + 1)∂
q
x

[
∂

q
x ,�q

] = 0

[E, x]q2 = (q + 1)2

4
x − q2(1 − q2)r2∂q

x

[
∂

q
x , E

]
q2 = (q + 1)2

4
∂q
x − q2(1 − q2)x�q.

13
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As an illustration we calculate [�q, x]q2 , using definition 2, lemma 5, the fact that E and
� commute and axiom (A2)

(
∂q
x

)2
x = 1

x
x∂q

x ∂q
x x = 1

x
∂q
x xx∂q

x

= 1

x
((q + 1)x + q2x2∂q

x )∂q
x

= (q + 1)∂q
x + q2x

(
∂q
x

)2
.

Since ∂
q
x is Spin(m)-invariant we also obtain the Howe dual pair (Spin(m), osp(1|2)q).

4. q-analogues of the radial Schrödinger equation

In [6, 7] the Schrödinger equation of the harmonic oscillator in the m-dimensional quantum
Euclidean space was studied. The symmetry group of the construction is SOq(m), see
[19]. The Hopf algebra Funq(SO(m)) of functions on SOq(m) are power series in Tij,
with Tij (g) the matrix of the fundamental representation for g ∈ SO(m). They satisfy
T CT T = C, for the metric C and have commutation relations determined by the braid matrix
R̂, R̂

ij

klT
k
s T l

p = T
j

l T i
k R̂kl

sp. In the undeformed case R̂
ij

kl = δikδjl . The braid matrix can be
written using projection operators as

R̂ = qPS − q−1PA + q1−mP1.

The braid matrix is connected to the metric by the relation (P1)
ij

kl = Cij Ckl

CpqCpq
. The

commutation relations for the variables and the derivatives are given by (PA)
ij

klx
kxl = 0

and (PA)
ij

kl∂
k∂l = 0. The action of the derivatives is given by the Leibniz rule

∂ixj = Cij + qR̂
ij

klx
k∂l.

The metric is used to define the generalized norm squared x2 = x · x = xiCij x
j and

the Laplace operator ∂ · ∂ = ∂iCij ∂
j ; they are clearly SOq(m)-invariant. The function space

considered is freely generated by the xk modulo the PA-commutation relations. The centre is
generated by 1 and x2 (see [6, 7, 19]).

This allows us to construct a q-deformed Hamiltonian with the corresponding Schrödinger
equation

H � = [−qm∂ · ∂ + x · x]� = E �, (28)

which has an SOq(m) symmetry. In [6] this equation was first solved by constructing creation
and annihilation operators. Then it was shown that this equation could also be solved using
an ansatz of the form

� = SI
k g(x2),

where SI
k is of degree k and satisfies ∂ · ∂SI

k = 0, so it replaces the notion of a spherical
harmonic. The Schrödinger equation (28) then led to the following equation (we use an
unimportant different normalization of the energy):[

−qm+2kx2(∂
q2

x2 )
2 −

[m

2
+ k

]
q2

∂
q2

x2 +
x2

(q + 1)2

]
g(x2) = E

q + 1
g(x2). (29)

14
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In this equation x2 can be treated as a normal variable, so we take r2 = x2 and g has to satisfy
a q-difference equation. By substituting g(x2) = f (r) and calculating

∂
q2

x2 g(x2) = g(q2x2) − g(x2)

(q2 − 1)x2

= 1

(q + 1)r

f (qr) − f (r)

(q − 1)r

we find that equation (29) leads to

1

q + 1

[
−qm+2k−1

(
∂q
r

)2 − [m + 2k − 1]q
1

r
∂q
r + r2

]
f (r) = Ef (r). (30)

This equation was studied in [17] and [18]. With the q-deformed Laplace operator in definition
3 it is possible to put this equation into a Schrödinger equation completely determined by q-
analysis, without quantum variables. By lemma 7, equation (30) for f (r) is equivalent with

1

q + 1
[−�q + r2]f (r)Hk = Ef (r)Hk, (31)

for Hk an arbitrary spherical harmonic. So, the entire quantum system in q-Euclidean space
can be replaced by the q-Schrödinger equation in undeformed space:

1

q + 1
[−�q + r2]�(x) = E�(x).

The dimension of the space of spherical harmonics does not depend on q, so dimSI
k =

dimHk , see [6, 7, 19, 29, 30]. This means the energy eigenvalues and multiplicities of
more general Schrödinger equations 1

q+1 [−�q + V (r)]�(x) = E�(x) are equal to those of
the corresponding Schrödinger equations in quantum Euclidean space. This spectrum can
be found using separation of variables and the results in [8]. As an example we consider
the free particle �qψ(x) = −l2ψ(x) as in [29]. The q-difference equation[

qm+2k−1
(
∂q
r

)2
+ [m + 2k − 1]q

1

r
∂q
r

]
f (r) = −l2f (r)

with f an even function is solved by

f (r) =
∞∑

n=0

(−1)n

�Q(n + 1)�Q

(
m
2 + k + n

) (
lr

q + 1

)2n

.

This corresponds to the q-Bessel functions introduced by Jackson:

Hk(x)

rk+ m
2 −1

J
q
m
2 +k−1(lr).

The odd case leads to the q-Neumann functions, see [29].

5. q-integration

5.1. One-dimensional case

The following lemma about one-dimensional q-integration follows from straightforward
calculations.

15
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Lemma 10. For q < 1, k ∈ N and a, b, c ∈ R, the following relations holds:

(i)

∫ bk

ak

dqk tkf (t) = [k]q

∫ b

a

dq tf (t)tk−1

(ii)

∫ b

a

dq tf (ct) = 1

c

∫ cb

ca

dq tf (t)

(iii)

∫ q−ka

0
dq tf (t) =

∫ a

0
dq tf (t) + (1 − q)a

k∑
i=1

f (aq−i )q−i .

In what follows we will need the q-integral of eQ(−t2) with Q = q2. First we need the
following lemma.

Lemma 11. The zeros of the exponentials defined in (7) and (8) are given by

Eq

(
qk+1

1 − q

)
= 0 if q > 1 and

eq

(
q−k

q − 1

)
= 0 if q < 1

for k ∈ N.

Proof. We start from the q-difference property (9) of the q-exponential

Eq(qu) = (1 + (q − 1)u)Eq(u).

This implies that Eq(qu) = 0 if and only if either Eq(u) = 0 or u = 1
1−q

. So we obtain

Eq(
qk+1

1−q
) = 0 for all k ∈ N. We still have to prove that these are the only possible zeros. If

we assume Eq(t) = 0 with t = qk+1

1−q
, then this would imply, since limj→∞ q−j t = 0, that

Eq(0) = 0. This is not the case as formula (7) implies Eq(0) = 1. The second claim can be
found immediately by making the substitution q → q−1.

�

Using lemma 10, lemma 11 and integral representation (10) we can calculate the q-
analogue of

∫
R

dt tν−1 exp(−t2). This result can also be found in [1].

Lemma 12. For q < 1 and with λQ =
√

1
1−Q

, the following holds:∫ λQ

−λQ

dq t t
ν−1eQ(−t2) = 2

q + 1
Q

ν
2 �Q

(ν

2

)
.

5.2. q-integration in R
m

One-dimensional q-integration is defined in equation (5). The aim of this section is to
generalize this concept to higher dimensions, corresponding to the q-deformation of the vector
derivative. This means we want analogues of equation (6). In classical Clifford analysis, these
are given by Cauchy-type formulae in higher dimensions, see [14, 15, 31, 32]. In this section
we will always assume q < 1. Before we define q-integration in R

m we repeat a well-known
fact about the �-operator. For f and g two Clifford-valued differentiable functions,∫

S
m−1

dξ(�f )g =
∫

S
m−1

dξf (�g).
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This equation together with the series expansion of q� yields

Lemma 13. For f and g two Clifford-valued analytical functions,∫
S

m−1
dξ(q�f )g =

∫
S

m−1
dξf (q�g).

Now we define our q-integration on R
m. There have been made other approaches to

generalize Jackson’s q-integration to higher dimensions (see [7, 30, 33, 34]), but those are
integrations over quantum variables, while we use a q-integration over commuting variables.
One approach is based on Gaussian integration and the necessity for a Stokes theorem [7, 33].
Our approach is more closely related to integration over the quantum Euclidean sphere [30],
but as we will see, it also satisfies Stokes theorem.

Definition 5. For every function f on the ball with radius R, B
m(R), for which the expression

is finite, the m-dimensional q-integral is given by∫
B

m(R)

f dqV (x) =
∫

S
m−1

dξ

∫ R

0
dqrr

m−1f,

with dqr the measure in (5).

We could also use the infinite Jackson q-integration (see [1–3]) to construct q-integration
on entire R

m but we will not need it here.

Remark 4. The function f only has to be defined on the spheres ∂B
m(qkR), k ∈ N, for this

integral to be well defined. By considering all integrations on the balls B
m(ql) for l ∈ Z we

obtain a mapping of functions defined on {∂B
m(qk)|k ∈ Z} ⊂ R

m into functions defined on
the set of points {qk|k ∈ Z}.

Applying lemma 10(ii) yields∫
B

m(R)

dqV (x)f (cx) = 1

cm

∫
B

m(cR)

dqV (x)f (x). (32)

Now we are ready to state and prove the Cauchy formula for the q-Dirac operator.

Theorem 5 (q-Cauchy formula). For f and g two Clifford-valued analytical functions on
B

m(R), the following relation holds:∫
B

m(R)

dqV (x)
[(

q�∂
q
x f

)
g(qx) − f

(
∂q
x g

)] = Rm−2
∫

∂B
m(R)

dξf (x)xg(x).

Proof. First we use equations (6), (3) and (4) to calculate∫ R

0
dqr∂

q
r

[
rmf

1

x
g

]
= −Rm−1f (Rξ)ξg(Rξ)

=
∫ R

0
dqr[m]qr

m−1f
1

x
g +

∫ R

0
dqrq

mrm∂q
r (f )

1

qx
g(qx)

+
∫ R

0
dqrq

mrmf ∂q
r

(
1

x
g

)

=
∫ R

0
dqrr

m−1f ([m]q + qm[E]q)
1

x
g

+ qm−1
∫ R

0
dqrr

m−1([E]qf )
1

x
g(qx).

17
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The above lemmas 5 and 13 lead to∫
B

m(R)

dqV (x)f (∂q
x g) =

∫
S

m−1
dξ

∫ R

0
dqrr

m−1f ([m]q + qm[E]q + [−�]qq
m+E)

1

x
g

= −Rm−1
∫

S
m−1

dξf (Rξ)ξg(Rξ)− qm−1
∫

B
m(R)

dqV (x)([E]qf )
1

x
g(qx)

+ qm

∫
S

m−1
dξ

∫ R

0
dqrr

m−1([−�]qf )
1

qx
g(qx)

= −Rm−2
∫

∂B
m(R)

dξf (x)xg(x)

+ qm−1
∫

B
m(R)

dqV (x)
1

x
(q−�([E + �]q)f )g(qx)

= −Rm−2
∫

∂B
m(R)

dξf (x)xg(x) +
∫

B
m(R)

dqV (x)
(
q�

(
∂

q
x

)
f

)
g(qx).

This concludes the proof. �

As a special case of this theorem we obtain the generalization of formula (6) to the
m-dimensional case.

Corollary 1. For g a Clifford-valued analytical function on B
m(R), the following Cauchy

formula holds:∫
B

m(R)

dqV (x)
(
∂q
x g

) = −Rm−2
∫

∂B
m(R)

dξ xg(x).

When we take g scalar, the formula in this corollary falls apart into formulae for the q-
partial derivatives Di in formula (25). In particular, for a function which vanishes on ∂B

m(R),
corollary 1 implies∫

B
m(R)

dqV (x)Dig = 0.

This shows the link with the Gaussian integration method in [7] and [33]. The q-partial
derivatives Di take the place of the derivatives with respect to the quantum variables.

The term q� which appears in theorem 5 is dropped when we consider the Laplace
operator.

Corollary 2. For f and g two Clifford-valued analytical functions on B
m(R) with

g = 0 = ∂
q
x g on ∂B

m(R),∫
B

m(R)

dqV (x)f (qx)(�qg) =
∫

B
m(R)

dqV (x)(�qf )g(qx).

Proof. We start by putting f = h and using theorem 5:∫
B

m(R)

dqV (x)h(qx)
(
∂q
x ∂q

x g
) = −

∫
B

m(R)

dqV (x)q�∂
q
x qEf (x)

(
qE∂q

x g
)
,
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where the surface term vanished because
(
∂

q
x g

) = 0 on the boundary. Using formula (32),
lemma 10(iii) with

(
∂

q
x g

)
(Rξ) = 0 and theorem 5 then leads to∫

B
m(R)

dqV (x)h(qx)
(
∂q
x ∂q

x g
) = −q

∫
B

m(R)

dqV (x)qE
[
q�∂

q
x h(x)

(
∂q
x g

)]
= − 1

qm−1

∫
B

m(qR)

dqV (x)q�∂
q
x h(x)

(
∂q
x g

)
= − 1

qm−1

∫
B

m(R)

dqV (x)q�∂
q
x h(x)

(
∂q
x g

)
= 1

qm−1

∫
B

m(R)

dqV (x)q�∂
q
x q�∂

q
x h(x)g(qx)

= 1

qm−1

∫
B

m(R)

dqV (x)q�qm−1−�∂
q
x ∂

q
x h(x)g(qx).

The surface term in the q-Cauchy theorem was again zero because g = 0. The q-Laplace
operator is scalar, so �q = �q and the proposed formula is obtained. �

6. Hermite polynomials

6.1. One-dimensional case

A lot of approaches have been used to study q-deformed versions of the Hermite polynomials,
see e.g. [1, 11–13]. Because of the different definitions and normalizations in the literature
we give a short overview of the q-Hermite polynomials. We choose a normalization such that
limq→1 H

q

k (t) = Hk(t), with Hk the classical Hermite polynomials. The starting point is the
q-Hermite’s equation of Exton, see [12]. This leads to a recursion relation, which is mostly
used to define q-Hermite polynomials. We will also calculate the creation and annihilation
operators and derive an orthogonality property. Most of these results can be found in [1].

Definition 6. The q-Hermite polynomial H
q

k is the polynomial of the form

H
q

k (t) =
�k/2�∑
j=0

a
j

k t
k−2j ,

with a0
k = (q + 1)k , which is an eigenvector of the q-Hermite’s equation:[(

∂
q
t

)2 − (q + 1)t∂
q
t

]
f (t) = −(q + 1)λf (qt).

From the definition we immediately find that the eigenvalues are

λk = [k]qq
−k.

The exact form of H
q

k is

H
q

k (t) =
�k/2�∑
j=0

(q + 1)k−j [k]q!

[k − 2j ]q!

t k−2j

[−2j ]q[−2j + 2]q · · · [−2]q
. (33)

Taking the limit q → 1 we find Hk(t) = ∑�k/2�
j=0 (−1)j 2k−2j k!

(k−2j)!j ! t
k−2j . Now we show

the recursion formula and the annihilation operator. The simplest way to prove these is by
considering the coefficients.
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Theorem 6. The following recursion formula holds for the polynomials introduced in
definition 6:

(i) H
q

k+1 = (q + 1)tH
q

k − (q + 1)[k]qq
k+1H

q

k−1

when k > 0. The annihilation operator for the q-Hermite polynomials is ∂
q
t :

(ii) ∂
q
t H

q

k (t) = (q + 1)[k]qH
q

k−1(t).

In the classical case the creation operator can be obtained from either the combination
of the annihilation operator and the recursion formula or the combination of the annihilation
operator and the Hermite’s equation. In the q-deformed case these two approaches lead to
different creation operators.

Theorem 7. For H
q

k as defined in definition 6 the following relations hold for k > 0:

(i) H
q

k (t) = (
(q + 1)t − qk∂

q
t

)
H

q

k−1(t)

and

(ii) H
q

k (qt) = qk
(
(q + 1)t − ∂

q
t

)
H

q

k−1(t).

For our purpose we use the following q-exponential based on formula (8) with Q = q2,

eQ(u) =
∞∑

j=0

qj(j−1) uj

[j ]q2 !
. (34)

This exponential satisfies ∂
q
t [eQ(−t2)] = −(q + 1)teQ(−q2t2). Together with theorem 7(ii)

and Leibniz rule (3) this yields

H
q

k (qt) eQ(−q2t2) = −qk ∂
q
t

[
H

q

k−1(t) eQ(−t2)
]
. (35)

Now we have all the necessary tools to prove the orthogonality relation for the q-Hermite
polynomials. The proof can be found in [1] or from the steps in the proof of theorem 10 using
theorem 6(ii) and formula (35).

Theorem 8. When q < 1, the q-Hermite polynomials are orthogonal with respect to the
inner product 〈f |g〉 = ∫ λQ

−λQ
dq t f geQ(−t2) with λQ

2 = 1
1−Q

:∫ λQ

−λQ

dq tH
q

k (t)H
q

l (t)eQ(−t2) = δkl2(q + 1)k−1q
1
2 (k+1)(k+2)[k]q!�Q

(
1

2

)
.

Remark 5. The inner product defined above is only positive definite if one considers
functions defined on the set of points {±λQqj |j ∈ N}.

6.2. Clifford–Hermite polynomials

Inspired by the q-Hermite’s equation in section 6.1 and the q-Dirac operator we define the
q-deformed Clifford–Hermite polynomials as solutions of a q-Clifford–Hermite’s equation.
The Clifford–Hermite polynomials were introduced in [20]. We will not repeat their properties
here, as they can be found from taking the limit q → 1.

Definition 7. The q-Clifford–Hermite polynomials are of the form

H
q

j,m,k(x)Mk =
�j/2�∑
i=0

a
j,k

i xj−2iMk, (36)
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with Mk a spherical monogenic of degree k. They are eigenvectors of the q-Clifford–Hermite’s
equation [

�q − (q + 1)x∂q
x

]
f (x) = −(q + 1)λf (qx).

The normalization is given by a
j,k

0 = (q + 1)j .

In this section we will use the notation 2β = m + 2k, assuming that we take k fixed, and
Q = q2. By a quick calculation and theorem 1 we find that the eigenvalues are given by
(j = 2t or j = 2t + 1)

λ2t,m,k = [2t]qq
−2t−k = (q + 1)[t]QQ−t−k/2

λ2t+1,m,k = [2t + m + 2k]qq
−2t−1−k = (q + 1)[t + β]QQ−t−(k+1)/2.

The explicit form of the q-Clifford–Hermite polynomials is given by

Lemma 14. The coefficients of the Clifford–Hermite polynomials in definition 7 are given by

a
2t,k
i = (q + 1)2tQ

1
2 i(i+1)

(
t

i

)
Q

[t − 1 + β]Q[t − 2 + β]Q · · · [t − i + β]Q

and

a
2t+1,k
i = (q + 1)2t+1Q

1
2 i(i+1)

(
t

i

)
Q

[t + β]Q[t − 1 + β]Q · · · [t − i + 1 + β]Q.

Proof. First we calculate, using equation (24),(
∂q
x

)2
a

2t,k
i−1x2t−2i+2Mk = [2t − 2i + 2]q[2t − 2i + m + 2k]qa

2t,k
i−1x2t−2iMk

and using lemma 1

x∂q
x a

2t,k
i x2t−2iMk = [2t − 2i]qa

2t,k
i x2t−2iMk.

Substituting these results and λ2t,m,k = [2t]qq−2t−k in the differential equation leads to

[2t − 2i + 2]q[2t − 2i + m + 2k]qa
2t,k
i−1 = (q + 1)a

2t,k
i ([2t]qq

−2t−kq2t−2i+k − [2t − 2i]q)

= (q + 1)a
2t,k
i

q2t−2i − q−2i − q2t−2i + 1

q − 1

= (q + 1)2a
2t,k
i

Q−i (Qi − 1)

Q − 1
,

or

a
2t,k
i = Qi [t − i + 1]Q[t − i + β]Q

[i]Q
a

2t,k
i−1 .

Iterating this yields a
2t,k
i . The a

2t+1,k
i are calculated in the same way. �

Using the Q-Gamma function leads to the explicit form of the q-Clifford–Hermite
functions:

H
q

2t,m,k(x)Mk = (q + 1)2t

t∑
i=0

Q
1
2 i(i+1)

(
t

i

)
Q

�Q(t + m/2 + k)

�Q(t − i + m/2 + k)
x2t−2iMk

and

H
q

2t+1,m,k(x)Mk = (q + 1)2t+1
t∑

i=0

Q
1
2 i(i+1)

(
t

i

)
Q

�Q(t + 1 + m/2 + k)

�Q(t + 1 − i + m/2 + k)
x2t−2i+1Mk.
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We only defined the �Q-function for Q < 1, but for Q > 1 the notation above can still
be used to denote [t+m/2+k]Q!

[t−i+m/2+k]Q! . The q-Clifford–Hermite polynomials are connected with a
q-deformation of the Laguerre polynomials in [1]. We define Lα

t (·|Q) by

H
q

2t,m,k(x) = (q + 1)2t [t]Q!L
m
2 +k−1
t (r2|Q) (37)

H
q

2t+1,m,k(x) = (q + 1)2t+1[t]Q!xL
m
2 +k

t (r2|Q). (38)

These Laguerre polynomials are also related to those in [21, 22], as we will show later.
In particular we obtain a q-deformation of the classical relation between one-dimensional
Hermite and Laguerre polynomials:

H
q

2t (u) = (−1)t (q + 1)2t [t]q2 !L− 1
2

t (u2|q2).

Lemma 15. The q-Clifford–Hermite polynomials satisfy the following relation:

∂q
x H

q

j,m,kMk = C(j,m, k)H
q

j−1,m,kMk

with C(2t, m, k) = (q + 1)2[t]Q and C(2t + 1,m, k) = (q + 1)2[t + β]Q.

Proof. For the even case the lemma follows from considering the coefficients

∂q
x a

2t,k
i x2t−2iMk = (q + 1)[t − i]Qa

2t,k
i x2t−1−2iMk

= (q + 1)2[t]Qa
2t−1,k
i x2t−1−2iMk.

The odd case is calculated similarly. �

The q-Clifford–Hermite polynomials can also be calculated using a recursion formula.

Lemma 16. The q-Clifford–Hermite polynomials satisfy the recursion formula

H
q

j+1,m,kMk = (q + 1)xH
q

j,m,kMk + D(j,m, k)H
q

j−1,m,kMk

with D(2t, m, k) = (q + 1)2Qt+β[t]Q and D(2t + 1,m, k) = (q + 1)2Qt+1[t + β]Q.

Proof. We prove this again by looking at the coefficients. They have to satisfy

a
j+1,k

i = (q + 1)a
j,k

i + D(j,m, k)a
j−1,k

i−1 .

For j = 2t we obtain

1 = (q + 1)
a

2t,k
i

a
2t+1,k
i

+ D(2t, m, k)
a

2t−1,k
i−1

a
2t+1,k
i

= [t − i + β]Q
[t + β]Q

+ D(2t, m, k)
[−i]Q

(−1)(q + 1)2[t]Q[t + β]Q

= 1

[t + β]Q
([t − i + β]Q − Qt+β[−i]Q).

The odd case is proved similarly. �

Similar to the one-dimensional case there are two creation operators.

Theorem 9. The q-Clifford–Hermite polynomials satisfy the following two relations:

(i) H
q

j,m,kMk = [
qσj ∂q

x + (q + 1)x
]
H

q

j−1,m,kMk
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with σ2t = 2t and σ2t+1 = 2t + 2k + m and

(ii) H
q

j,m,k(qx)Mk = qj
[
∂q
x + (q + 1)x

]
H

q

j−1,m,k(x)Mk.

Proof. These two equations can be found from combining lemma 16 with lemma 15 and
from combining lemma 15 with definition 7. �

Using the definition of the q-exponential (34) and the Leibniz rule in lemma 6 yields

∂q
x eQ(x2) = eQ(q2x2)

[
∂q
x + (q + 1)x

]
, (39)

so theorem 9(ii) can be written as

H
q

j,m,k(qx)Mk eQ(q2x2) = qj ∂q
x H

q

j−1,m,k(x)Mk eQ(x2). (40)

Theorem 10. For q < 1, with R
m
q = B

m(λQ) and λ2
Q = 1

1−Q
, the q-Clifford–Hermite

polynomials are orthogonal with respect to the inner product

〈f |g〉 =
∫

R
m
q

dqV (x)[f geQ(x2)]0.

For the even Clifford–Hermite polynomials this means∫
R

m
q

dqV (x)
[
H

q

2j,m,kM
(p)

k H
q

2t,m,kM
(r)
l eQ(x2)

]
0

= δjt δklδpr (q + 1)4j−1Q(j+1)(j+β)[j ]Q!�Q(j + β),

for the odd case∫
R

m
q

dqV (x)
[
H

q

2j+1,m,kM
(p)

k H
q

2t+1,m,kM
(r)
l eQ(x2)

]
0

= δjt δklδpr (q + 1)4j+1Q(j+1)(j+β+2)[j ]Q!�Q(j + β + 1)

and for the mixed case∫
R

m
q

dqV (x)
[
H

q

2j+1,m,kM
(p)

k H
q

2t,m,kM
(r)
l eQ(x2)

]
0 = 0.

Proof. Equation (20) implies that k = l is necessary for the Clifford–Hermite polynomials
not to be orthogonal. Using equations (32) and (40) yields∫

R
m
q

dqV (x)H
q

j,m,kMkH
q

t,m,kMkeQ(x2)

= qm+2k

∫
q−1R

m
q

dqV (x)H
q

j,m,k(qx)MkH
q

t,m,k(qx)MkeQ(q2x2)

= qm+2k+t

∫
q−1R

m
q

dqV (x)H
q

j,m,k(qx)Mk

(
∂q
x H

q

t−1,m,k(x)MkeQ(x2)
)
.

Now we use theorem 5 with eQ

(−Q−1 1
1−Q

) = 0 (lemma 11) and lemma 15:

= qm+2k+t

∫
q−1R

m
q

dqV (x)
[
q�∂

q
x H

q

j,m,k(qx)Mk

]
H

q

t−1,m,k(qx)qkMkeQ(q2x2)

= qm+3k+t+1C(j,m, k)

∫
q−1R

m
q

dqV (x)
[
q�H

q

j−1,m,k(qx)Mk

]
H

q

t−1,m,k(qx)MkeQ(q2x2)

= qk+t+1C(j,m, k)

∫
R

m
q

dqV (x)
[
q�H

q

j−1,m,kMk

]
H

q

t−1,m,kMkeQ(x2).
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Substituting equation (18) for the even case yields〈
H

q

2j,m,kMk

∣∣Hq

2t,m,kMk

〉 = Qt+ m
2 +k(q + 1)2[j ]Q

〈
H

q

2j−1,m,kMk

∣∣Hq

2t−1,m,kMk

〉
and for the odd case〈
H

q

2j+1,m,kMk

∣∣Hq

2t+1,m,kMk

〉 = Qt+1(q + 1)2
[
j + k +

m

2

]
Q

〈
H

q

2j,m,kMk

∣∣Hq

2t,m,kMk

〉
.

The theorem follows from iterating these results and lemma 12:∫
R

m
q

dqV (x)
[
M

(p)

k M
(r)
k eQ(x2)

]
0 =

∫ ∞

0
dqrr

m+2k−1eQ(−r2)δpr

= 1

q + 1
Qβ�Q(β)δpr .

�

Finally, we take a closer look at the even Clifford–Hermite polynomials H
q

2j,m,kMk .
Because Mk ∈ Hk , Mk is of the form

∑
A HA

k aA with aA ∈ R0,m and HA
k scalar

spherical harmonics. From lemma 15 we find that �qH
q

2j,m,kMk = −C(2j,m, k)C(2j −
1,m, k)H

q

2j−2,m,kMk . Because �q and H2j,m,k are scalar this formula also holds for each
scalar part H

q

2j,m,kH
A
k . We define the scalar q-Clifford–Hermite polynomials as H

q

2j,m,kHk for
Hk a scalar spherical harmonic; the annihilation operator is given by

�qH
q

2j,m,kHk = −(q + 1)4[j ]Q

[
j +

m

2
+ k − 1

]
Q

H
q

2j−2,m,kHk. (41)

In order to obtain the creation operator we apply theorem 9(ii):

H2j,m,kMk = qk−Eq2j
[
∂q
x + (q + 1)x

]
qk−Eq2j−1

[
∂q
x + (q + 1)x

]
H2j−2,m,kMk.

Since this operator is again scalar, see lemma 3, this also holds for the scalar q-Clifford–
Hermite polynomials:

H2j,m,kHk = −Q2j+k−E−1[�q − 4E + q2(q + 1)2r2]H2j−2,m,kHk. (42)

6.3. Generalized Laguerre polynomials

In the previous section we found q-deformed generalized Laguerre polynomials from the
relation

H
q

2t,m,k(x) = (q + 1)2t [t]Q!L
m
2 +k−1
t (r2|Q).

For a general α > −1 we define the Q-Laguerre polynomials as

Lα
t (u|Q) =

t∑
i=0

Q
1
2 (t−i)(t−i+1) (−u)i

[t − i]Q![i]Q!

�Q(t + α + 1)

�Q(i + α + 1)
.

These are the second type of Laguerre polynomials considered in [1]. When we make the
substitution Q → q−1, using [k]q−1 = q1−k[k]q , we find

Lα
t (u|q−1) =

t∑
i=0

q− 1
2 (t−i)(t−i+1) (−u)i

[t − i]q−1 ![i]q−1 !

[t + α]q−1 !

[i + α]q−1 !

= q− 1
2 t (t+1)−αt

t∑
i=0

qi(i+α) (−u)i

[t − i]q ![i]q !

[t + α]q !

[i + α]q !
.

These are the q-Laguerre polynomials in [22], or with a different normalization in [21].
In [1] both the q-Laguerre polynomials, which are connected with the substitution (q ↔ q−1),
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were studied. We could also have used a second type of q-Hermite polynomials (see [1]) to
generalize to the Clifford setting to obtain the q-Laguerre polynomials in [22]. The Q-Laguerre
polynomials can be defined as the solution of the Q-difference equation (see [1]):

Qα+1u
(
∂Q
u

)2Lα
t (u|Q) + ([α + 1]Q − u)∂Q

u Lα
t (u|Q) = [−t]QLα

t (Qu|Q). (43)

For α = m
2 + k − 1 this is equivalent to the differential equation in definition 7. Equation (43)

can be written using the q-exponential

∂Q
u

(
eQ(−u)uα+1∂Q

u Lα
t (u|Q)

) = [−t]QuαeQ(−Qu)Lα
t (Qu|Q). (44)

Using this we can prove the orthogonality of the Q-Laguerre polynomials, which is another
way to prove the orthogonality of the Clifford–Hermite polynomials.

Theorem 11. For Q < 1 the Q-Laguerre polynomials for a fixed α > −1 are orthogonal
with respect to the inner product

〈f |g〉α =
∫ 1

1−Q

0
dQuuαf (u)g(u)eQ(−u).

Proof. Equation (44) leads to the following relation:

∂Q
u

[
Lα

j (u|Q)eQ(−u)uα+1∂Q
u Lα

t (u|Q) − Lα
t (u|Q)eQ(−u)uα+1∂Q

u Lα
j (u|Q)

]
= ([−t]Q − [−j ]Q)uαLα

j (Qu|Q)eQ(−Qu)Lα
t (Qu|Q).

The orthogonality then follows from (6). For α = m
2 + k − 1 the result can also be found from

theorem 10 and lemma 10(i). �

Finally, we construct a family of realizations of Uq (su(1|1)) for which the q-Laguerre
polynomials will be the eigenvectors of their representations. We define

A = Q−E− m
2 [�q − 4E + q2(q + 1)2r2]

(q + 1)2
and B = �q

(q + 1)2

and write equations (42) and (41) in terms of the q-Laguerre polynomials

AL
m
2 +k−1
j−1 (r2|Q)Hk = −[j ]QQ1−2j−k− m

2 L
m
2 +k−1
j (r2|Q)Hk

and

BL
m
2 +k−1
j (r2|Q)Hk = −

[
j +

m

2
+ k − 1

]
Q

L
m
2 +k−1
j−1 (r2|Q)Hk.

We define C = [A,B]Q, from its definition we find

CL
m
2 +k−1
j (r2|Q)Hk = Q1−2j−k− m

2

([
j +

m

2
+ k − 1

]
Q

[j ]Q

− Q−1
[
j +

m

2
+ k

]
Q

[j + 1]Q

)
L

m
2 +k−1
j (r2|Q)Hk

= Q1−2j−k− m
2

(
Q2j+ m

2 +k−1 + 1 − Q2j+ m
2 +k − Q−1

(Q − 1)2

)
L

m
2 +k−1
j (r2|Q)Hk

= −Q−2j−k− m
2

[
2j + k +

m

2

]
Q
L

m
2 +k−1
j (r2|Q)Hk.

These calculations yield

(AC − Q2CA)L
m
2 +k−1
j (r2|Q)Hk = (Q + 1)AL

m
2 +k−1
j (r2|Q)Hk
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and

(CB − Q2BC)L
m
2 +k−1
j (r2|Q)Hk = (Q + 1)BL

m
2 +k−1
j (r2|Q)Hk.

Since the scalar Clifford–Hermite polynomials constitute a basis for R[x1, . . . , xm]
(lemma 1), this suffices to prove the following su(1|1)q-relations:

[A,B]Q = C [A,C]Q2 = (Q + 1)A [C,B]Q2 = (Q + 1)B.

Hence we obtain a family of representations of su(1|1)q . This fits into the theory
of relations between representations of quantum algebras and q-special functions, see
e.g. [4, 35, 36]. For every k,m ∈ N, we define the operator Am

k on the space of polynomials
in one variable R[t] by[

Am
k f (t)

]
(t = r2)Hk(x) = Af (r2)Hk(x)

with x ∈ R
m and Hk an arbitrary spherical harmonic of degree k. The operators Bm

k and Cm
k

are defined similarly.

Theorem 12. For every k,m ∈ N, the set of operators
{
Am

k , Bm
k , Cm

k

}
generate the su(1|1)q-

quantum algebra. The basis
{
L

m
2 +k−1
j (t |Q)|j ∈ N

}
of R[t] is the set of eigenvectors for this

representation of su(1|1)q .

The su(1|1)q algebra appearing here can be linked with the version of UQ (su(1|1)) in
[36]. Define J0 by the relation

C = −Q−2J0 [2J0]Q;
this implies J0L

m
2 +k−1
j (r2|Q)Hk = 1

2

(
2j + m

2 + k
)
L

m
2 +k−1
j (r2|Q)Hk , so

[J0, A] = A and [J0, B] = −B.

By defining J+ = QJ0A and J− = qB we calculate

[J−, J+] = qBQJ0A − qQJ0AB

= qQJ0 (QBA − AB)

= −qQJ0C

= QJ0 − Q−J0

Q1/2 − Q−1/2
.

This relation together with [J0, J±] = ±J± shows that J± and J0 generate the UQ (su(1|1))

algebra in [36].

7. Conclusion

Our aim was to extend the existing q-calculus with a theory of partial derivatives in higher
dimensions and a q-Laplace operator acting on functions in commuting variables. This was
done by imposing four natural axioms that a q-Dirac operator should satisfy and led to a
unique q-Dirac operator. Since this is a vector operator, it implies the definition of q-partial
derivatives. The q-Laplace operator was defined as minus the square of the q-Dirac operator
and is scalar.

The q-Dirac operator and the vector variable generate the quantum algebra osp(1|2)q ,
and the q-Laplace operator and the norm squared generate sl2(R)q , the even subalgebra
of osp(1|2)q . This sl2(R)q already appeared in other q-calculus problems and in
quantum Euclidean space. Since the q-Dirac and q-Laplace operators still possess their
Spin(m) and SO(m) invariance, we obtained the Howe dual pairs

(
Spin(m), osp(1|2)q

)
and
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SO(m), sl2(R)q

)
. This can be a starting point for the study of general Howe duality including

quantum algebras and quantum groups.
The q-Laplace operator defines a q-Schrödinger equation. It is shown that the SO(m)-

invariant q-Schrödinger equation on undeformed Euclidean space is equivalent with the
SOq(m)-invariant Schrödinger equation on quantum Euclidean space. This is an example
of the interaction between quantum groups and q-calculus.

The q-difference equation for q-Hermite polynomials and the q-Dirac operator lead to
a q-deformation of the Clifford–Hermite equation. The corresponding q-Clifford–Hermite
polynomials have creation and annihilation operators and satisfy a recursion formula.
These properties and a q-Cauchy formula lead to an orthogonality relation for the q-Clifford–
Hermite polynomials. The q-Clifford–Hermite polynomials can be expressed in terms of the
q-Laguerre polynomials. This identification leads to a realization of the suq(1|1) algebra action
on R[t]. The weight vectors of this representation are q-Laguerre polynomials. This gives
a new q-calculus interpretation to the appearance of quantum algebras in the representation
theory of q-special functions.
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